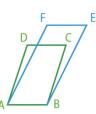
CHAPITRE 2: LES VECTEURS

55 Sur la figure ci-contre, ABCD et ABEF sont deux parallélogrammes.

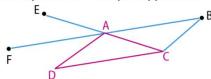
- **1.** Donner, en justifiant, deux vecteurs égaux à \overrightarrow{AB} .
- **2.** Montrer que le quadrilatère FECD est un parallélogramme.



56 On considère un parallélogramme EFGH.

- 1. Faire une figure.
- 2. Construire le point J tel que EFHJ est un parallélogramme.
- 3. Montrer que H est le milieu du segment [GJ].

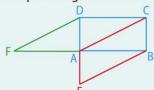
57 On considère un triangle ADC isocèle en A. Soit B le point tel que ADCB est un parallélogramme, E et F les symétriques respectifs de C et B par rapport à A.



- 1. Justifier que le quadrilatère EFCB est un parallélogramme.
- **2. a.** Montrer que $\overrightarrow{AD} = \overrightarrow{EF}$.
- b. Montrer que le quadrilatère AEFD est un losange.

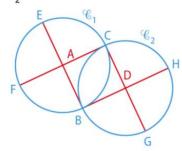
58 Une question ouverte

Sur la figure ci-dessous, ABCD est un rectangle, et AEBC et ACDF sont des parallélogrammes. Montrer que le quadrilatère EBDF est un parallélogramme de centre A.



138 Des cercles sécants

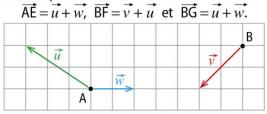
On considère deux cercles \mathscr{C}_1 et \mathscr{C}_2 de même rayon et de centres respectifs A et D. \mathscr{C}_1 et \mathscr{C}_2 sont sécants en B et C. [BE] et [CF] sont des diamètres de \mathscr{C}_1 ; [BH] et [CG] sont des diamètres de \mathscr{C}_2 .



Montrer que le point C est le milieu du segment [EH].

PISTE: Montrer que les quadrilatères ADCE et ADHC sont des parallélogrammes.

62 Reproduire la figure ci-dessous, et construire les points E, F et G définis par :



67 Soit A, B et C trois points.

Recopier et compléter, en utilisant la relation de Chasles, chacune des égalités vectorielles suivantes :

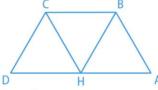
a.
$$\overrightarrow{BA} + \overrightarrow{...C} = \overrightarrow{BC}$$

b.
$$\overrightarrow{AB} + \overrightarrow{B} = \overrightarrow{AC}$$

$$\overrightarrow{C}$$
 + \overrightarrow{BA} = \overrightarrow{CA}

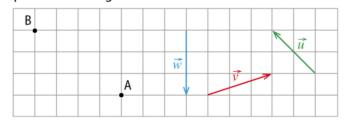
$$\overrightarrow{d}$$
... \overrightarrow{C} + ... \overrightarrow{A} = \overrightarrow{BA}

69 Sur la figure ci-contre, HAB, HBC et HCD sont des triangles équilatéraux.



- **1.** Quelle est la nature des quadrilatères BCDH et ABCH?
- 2. a. Montrer que $\overrightarrow{AB} + \overrightarrow{CB} = \overrightarrow{HC} + \overrightarrow{CB}$.
- **b.** En déduire que $\overrightarrow{AB} + \overrightarrow{CB} = \overrightarrow{HB}$.
- 3. Remplacer chacune des sommes vectorielles suivantes par un vecteur unique : $\overrightarrow{HC} + \overrightarrow{HA}$; $\overrightarrow{DH} + \overrightarrow{AB}$; $\overrightarrow{BH} + \overrightarrow{AB}$.

63 1. Reproduire la figure ci-dessous et construire le représentant d'origine A des vecteurs $\overrightarrow{u} + \overrightarrow{v}$ et $\overrightarrow{u} - \overrightarrow{v}$.



2. Construire les points E et F définis par :

$$\overrightarrow{BE} = \overrightarrow{u} + \overrightarrow{w}$$
 et $\overrightarrow{BF} = \overrightarrow{v} + \overrightarrow{w}$.

68 Soit A, B et C trois points.

Justifier les égalités vectorielles suivantes :

$$\overrightarrow{AB} - \overrightarrow{CB} = \overrightarrow{AC}$$
 et $-\overrightarrow{CA} + \overrightarrow{CB} = \overrightarrow{AB}$.

78 Vrai ou Faux?

A, B et C sont trois points.

Indiquer si les affirmations proposées sont vraies ou fausses, puis justifier.

- **a.** Si I est le milieu du segment [AB], alors $\overrightarrow{BI} = \frac{1}{2} \overrightarrow{AB}$.
- **b.** Si $\overrightarrow{AC} = 3\overrightarrow{AB}$, alors $\overrightarrow{BC} = 2\overrightarrow{AB}$.

79 Sur la figure ci-contre, ABCD est un parallélogramme, et E et F sont les points définis par:

$$\overrightarrow{AE} = \frac{1}{4} \overrightarrow{AB}$$
 et $\overrightarrow{DF} = \frac{3}{4} \overrightarrow{DC}$.

Montrer que le quadrilatère AECF est un parallélogramme.

